Fo	Follow through between parts of Question 1 should be allowed for the value of a found in part (i) into parts (ii) and (iii).							
1	(i)	$v^2 - u^2 = 2as$						
		$31^2 - 12^2 = 2 \times 215 \times a$	M1	Selection and use of appropriate equation(s)				
		$a = 1.9 \text{ so } 1.9 \text{ m s}^{-2}$	A1					
			[2]					
	(ii)	v = u + at						
		31 = 12 + 1.9t	M1	Selection and use of appropriate equation(s)				
		t = 10 so 10 s	A1	FT from their value of a from part (i).				
			[2]					

(iii)	$s = ut + \frac{1}{2}at^2$		
	$\frac{215}{2} = 12t + \frac{1}{2} \times 1.9 \times t^2$	M1	Selection and use of $s = ut + \frac{1}{2}at^2$, oe. Correct elements but condone minor arithmetic errors.
	$t = \frac{-12 \pm \sqrt{12^2 + 4 \times 0.95 \times 107.5}}{1.9}$	M1	Use of quadratic formula (may be implied by answer), oe.
	t = 6.055 (or -18.69)	A1	FT their a only.
		[3]	
	Alternative: Finding a 2-stage method		
	$v^2 - u^2 = 2as \text{ and } s = \frac{(u+v)}{2}t$		
	$v = \pm \sqrt{12^2 + 2 \times 1.9 \times 107.5} = (\pm)23.505$	M1	Selection and use of a complete valid 2-stage method
	$s = \frac{(u+v)}{2}t \Rightarrow t = \frac{2 \times 107.5}{(12+23.505)} \left(\text{or } t = \frac{2 \times 107.5}{(12-23.505)}\right)$	M1	Using the output from the first stage to find <i>t</i>
	t = 6.055 (or 18.69)	A1	FT their a only.

(iv)	Because it is accelerating, it travels less fast in the first half of the distance and so takes more time.	B1	The answer must refer to the two parts of the distance (or "the same distance") so no credit is given to answers like	
			"Because it is accelerating" and "Because its speed is not uniform".	
			Most successful answers will refer to the times to cover AM and MB but this may be implicit. So B1 should be given for an answer like	
			"It is travelling faster between M and B than it is between A and M"	
			Notice that the fact that the acceleration is uniform is irrelevant.	
		[1]		

2	(i)	Initial speed is 25 m s ⁻¹	B1	
			[1]	
2	(ii)	Vertical motion: $y = 20t - 4.9t^2$	M1	Forming an equation or expression for vertical motion
		When $y = 0$,	M1	Finding t when the height is 0
		$T = (0 \text{ or}) \frac{20}{4.9} = 4.08 \text{ s}$	A1	
				Allow $15 \times$ their T
		$R = 15 \times 4.08 = 61.22$	F1	Note If horizontal and vertical components of the initial velocity are interchanged treat it as a misread; if no other errors are present this gives 3 marks.
			[4]	
		Alternative Using time to maximum height		
		Vertical motion: $v = 20 - 9.8t$	M1	Forming an equation or expression for vertical motion
		Flight time = $2 \times \text{Time to top}$	M1	Using flight time is twice time to maximum height or equivalent for range.
		$T = 2 \times \frac{20}{9.8} = 4.08 \text{ s}$	A1	
		$R = 15 \times 4.08 = 61.22$	F1	Allow 15× their T
		Alternative Using formulae		
		Finding angle of projection		
		$\alpha = \arctan\left(\frac{20}{15}\right) = 53.1^{\circ}$	M1	Only award this mark if there is a clear intention to use this method
		$R = \frac{2u^2 \sin \alpha \cos \alpha}{g} = \frac{2 \times 25^2 \times \sin 53.1^\circ \times \cos 53.1^\circ}{9.8}$	M1	Allow the alternative form $R = \frac{u^2 \sin 2\alpha}{g}$ with substitution
		R = 61.2	A1	
		$T = \frac{2u\sin\alpha}{g} = 4.08$ Sigs And Maths Tutor.com	A1	

PhysicsAndMathsTutor.com

C	Question		er	Marks	Guidance
2	(iii)	(A)	Flight time $=\frac{15}{4.9}$		
			Range = $20 \times \frac{15}{4.9} = 61.22$	B1	Allow FT from part (ii) for a correct argument that they should be the same
				[1]	
2	(iii)	(B)	No	M1	Attempt at disproof or counter-example. There must be some reference to the angle.
			eg angle of projection 45°	A1	Complete argument
				[2]	

(Questio	n	Answer	Marks	Guidance
3	(i)	$v = \int (6t - 12)t$ $v = 3t^2 - 12t + 1$	$\mathrm{d}t$	M1	Attempt to integrate
		$v = 3t^2 - 12t +$	c	A1	Condone no c if implied by subsequent working (eg adding 9 to the expression)
		c = 9		A1	
		$t = 3 \Rightarrow v = 3 \times$	$3^2 - 12 \times 3 + 9 = 0$	E1	Or by showing that $(t-3)$ is a factor of $3t^2 - 12t + 9$
				[4]	
	(ii)	$s = \int (3t^2 - 12t)$		M1	Attempt to integrate Ft from part (i)
		$s = t^3 - 6t^2 + 9$	2t-2	A1	A correct value of c is required. Ft from part (i).
		When $t = 2$, s	s = 0. (It is at the origin.)	B1	Cao
				[3]	

C	Questic	on	Answer	Marks	Guidance
4	(i)		At C: $s = ut + \frac{1}{2}at^2$		
			$500 = 5 \times 20 + 0.5 \times a \times 20^2$	M1	M1 for a method which if correctly applied would give a.
			$a = 2 \text{ (ms}^{-2})$	A1	Cao
					Special case If 800 is used for s instead of 500, giving $a = 3.5$, treat this as a misread. Annotate it as SC SC and give M1 A0 in this part
				[2]	
4	(ii)		At B: $v^2 - u^2 = 2as$	M1	M1 for a method which if correctly applied would give either <i>v</i> or <i>t</i> Apply FT from incorrect <i>a</i> from part (i) for the M mark only
			$v^2 - 5^2 = 2 \times 2 \times 300$		
			v = 35 Speed is 35 m s ⁻¹	A1	Cao. No FT from part (i) except for SC1 for 46.2 following $a = 3.5$ after the use of $s = 800$.
			At B: $v = u + at$		
			$35 = 5 + 2 \times t$		
			t = 15 Time is 15 s	A1	Cao. No FT from part (i) except for SC1 for 11.7 following $a = 3.5$ after the use of $s = 800$.
				[3]	

		mark	comment
5	either for <i>u</i> first: $8 = \frac{1}{2}(u + 2.25) \times 32$ u = -1.75 so 1 .75m s ⁻¹ 2.25 = -1.75 + 32a a = 0.125 so 0.125 m s ⁻² Directions of <i>u</i> and <i>a</i> are defined	M1 A1 M1 F1 F1	Using $s = \frac{1}{2}(u+v)t$ Use of any appropriate <i>suvat</i> with their values and correct signs Sign must be consistent with their u , FT from their value of u Establish directions of both u and a in terms of A and B. May be shown by a diagram, eg showing A and B and a line between them together with an arrow to show the positive direction. Without a diagram, the wording must be absolutely clear: eg do not accept left/right, forwards/backwards without a diagram or more explanation. Dependent on both M marks.
	Or for a first: $8 = 2.25 \times 32 - \frac{1}{2} \times a \times 32^2$ a = 0.125 so 0.125 m s ⁻² $2.25 = u + 32 \times 0.125$ u = -1.75 so 1.75 m s ⁻¹ Directions of u and a are defined	M1 A1 M1 F1 F1	Using $s = vt - \frac{1}{2}at^2$ Use of any appropriate <i>suvat</i> with their values and correct signs Sign must be consistent with their <i>a</i> , FT from their value of <i>a</i> Establish directions of both <i>u</i> and <i>a</i> in terms of A and B. May be shown by a diagram, eg showing A and B and a line between them together with an arrow to show the positive direction. Without a diagram, the wording must be absolutely clear: eg do not accept left/right, forwards/backwards without a diagram or more explanation. Dependent on both M marks.
	Or using simultaneous equations Set up one relevant equation with a and u . Set up second relevant equation with a and u . Solving to find $u = -1.75$ so 1.75 m s^{-1} Solving to find $a = 0.125$ so 0.125 m s ⁻² Directions of u and a are defined	M1 M1 A1 F1 F1	Using one of $v = u + at$, $s = ut + \frac{1}{2}at^2$ and $v^2 = u^2 + 2as$ Using another of $v = u + at$, $s = ut + \frac{1}{2}at^2$ and $v^2 = u^2 + 2as$ FT from their value of u or a , whichever found first Establish directions of both u and a in terms of A and B. May be shown by a diagram, eg showing A and B and a line between them together with an arrow to show the positive direction. Without a diagram, the wording must be absolutely clear: eg do not accept left/right, forwards/backwards without a diagram or more explanation. Dependent on both M marks.
		5	

		mark	comment	sub
6(i)	The distance travelled by P is $0.5\times0.5\times t^2$ The distance travelled by Q is $10t$	B1 B1	Accept 10 <i>t</i> + 125 if used correctly below.	2
(ii)	Meet when $0.25t^2 = 125 + 10t$ so $t^2 - 40t - 500 = 0$ Solving t = 50 (or -10) Distance is $0.25 \times 50^2 = 625$ m	M1 F1 A1 A1	All their wrong expressions for P and Q distances Allow ± 125 or 125 omitted Award for their expressions as long as one is quadratic and one linear. Must have 125 with correct sign. Accept any method that yields (smaller) + ve root of their 3 term quadratic cao Allow –ve root not mentioned cao [SC2 400 m seen]	4
				5
		7		